fonksiyon

Bir nesnenin, bir şeyin ya da bir kişinin ait olduğu bütün ya da bir sis­tem içindeki kendine özgü faaliyeti. Bir şeyin, ait olduğu sınıfa özgü olan tarzda ey­lemde bulunma yetisi ya da gücü. Bir organın, parçaları birbirine bağımlı bir bütün içinde oynadığı kendisine özgü ve belirleyi­ci, karakteristik rol. Bir şeyin kendisi özgü doğal eylemi. Aralarında bağımlılık ya da karşılıklılık ilişkisi bulunan düzenli nesne kümeleri arasındaki ilişkileri ifade eden kavram.

FONKSIYON (türkçe) anlamı
1. Fransızcadan (fonction) dilimize geçen bu söz genel olarak “
2. Bir nesne veya bir kimsenin gördüğü iş
3. iş görme yetisi.”
anlamında kullanılmaktadır. Bu anlam için dilimizde işlev karşılığı bulunmaktadır.
FONKSIYON (türkçe) anlamı
4. 1 . İşlev:
5. Bunun aynı zamanda mimari bir fonksiyonu da var.- H. Taner.
6. 2 . Görev.
7. 3 . matematikBir veya birçok değeri değişebilen niceliklere bağlı olarak değişen nicelik.
8. 4 . kimyaBir birleşikteki herhangi bir madde grubunun kimyasal görevi
9. bu görevi nitelendiren özelliklerin tamamı.
FONKSIYON (türkçe) ingilizcesi
1. n. function,
FONKSIYON (türkçe) fransızcası
1. fonction [la]
FONKSIYON (türkçe) almancası
1. n. Funktion

Fonksiyon hakkında bilgiler

Fonksiyon, bir cümlenin (kümenin) her elemanını ikinci bir cümlenin yalnız bir elemanıyla eşleyen bir bağıntı. Birinci cümleye tarif cümlesi, ikinci cümleye değer cümlesi denir. Genellikle bu elemanlar sayılardan ibarettir. Pekçok fonksiyon, çeşitli bilim konularında ortaya çıkar.

Fonksiyon 17. yüzyıldan beri matematiğin bir ana kavramı olmuştur. Hareketlerin araştırılmasında Galile, Kepler ve Newton, zamanla mesafe arasında münasebetleri ortaya koymuşlardır. Gazların sıcaklık, basınç ve hacimleri arasındaki münasebet Robert Boyle tarafından, 17. yüzyılda ve A.C. Charles tarafından 18. yüzyılda keşfedilmiştir. On dokuzuncu yüzyılda ise akım, voltaj ve direnç arasındaki münasebet ile elektrik anlaşılır hale gelmiştir. Daha sonra biyoloji ve sosyal bilimlerde de sayılar ile ilgili bilgiler ve bununla fonksiyon kavramı önem kazanmıştır. Tamamı için linke tıklayın" href="http://ansiklopedi.bibilgi.com/Bilim">Bilimde en önemli kavramın değişkenler arasındaki ilişkiler olduğu söylenilebilir.

Bir fonksiyon, iki cümlenin elemanlarını birbirine karşı getirir.

Burada saatin her bir değerine, sıcaklığın bir değeri karşı gelmektedir. Bu sebepten sıcaklığın, zamanın bir fonksiyonu olduğu söylenebilir. Seçilen her bir h değeri için karşı gelen bir t değeri bulunacaktır. Burada hye bağımsız değişken, tye bağımlı değişken denir. Ayrıca hye argüman ve tye de fonksiyon değeri adı verilir.

Argüman değerlerin teşkil ettiği cümle fonksiyonun tarif bölgesini gösterir. Fonksiyonun aldığı değerlerin cümlesi ise, fonksiyon değerleri cümlesini belirler.

Tarif cümlesi sonlu sayıda elemana sahip olduğu gibi, çok fazla sayıda eleman da bulunabilir. Fonksiyonun değer bölgesi, tarif bölgesi gibi çeşitli olabilir. Genel olarak bir fonksiyonu tersine çevirmek, yani hyi tnin fonksiyonu olarak ifade etmek her zaman mümkün değildir. Fonksiyon bire bir örtense, yani tarif cümlesindeki her elemana değer cümlesinde bir ve yalnız bir eleman, tersine olarak değer cümlesindeki her elemana da tarif cümlesinde bir ve yalnız bir eleman karşılık gelirse, ters fonksiyonu tarif etmek mümkündür.

Fonksiyonun ifadesi

Fonksiyonların ifadesi için esas olarak üç yol mevcuttur: Tablo, grafik ve denklem ile temsil gösterenin, değişken değerlerine karşı gelen fonksiyon değerlerinin bir tabloda ifadesi, en basit ve yaygın yoldur. Pekçok sayılar ile ilgili bilgileri ihtiva eden kitaplarda bu tür tablolar mevcuttur. Grafik türünden bir temsil göstermek ise, fonksiyonu daha çok göze hitap eden bir şekle sokmaktadır.

Fonksiyonun diğer yaygın bir şekli de, denklem şeklinde olan ifadesidir. Mesela: Bir karenin alanı bir kenarının fonksiyonu olarak A = x2 şeklinde ifade edilir. Bir serbest düşüşte alınan s mesafesinin, t zamanına bağlılığı S = 1/2 g.t2 = 4.905.t2 şeklindedir. Fahrenheit derece ile Celsius derece arasındaki ilgi ise F = 9C/5 + 32 olarak belirlidir. Değişik bir fonksiyonda, 1 Türk lirasının % 6dan faizle işletilmesi ve faizin üç ayda bir hesab edilmesiyle n yıl sonra bu para A = (1,015)4n değerini veren ifadede ortaya çıkar.

Bu üç tür fonksiyon ifadesi birbirini tamamlar. Mesela; formül mevcutsa, tablo ve grafik halinde ifade etmek mümkündür. Her zaman değilse de bazan tablo edilmiş, değerlerden, buna uyan bir denklem bulmak mümkün olabilir. Bir fonksiyonu, tarif etmek için, sadece fonksiyonun, verilen değere karşı getirdiği değeri belirleyen kuralı vermek yetmez. Onun tarif bölgesini belirlemek gerekir. Fonksiyon tablo veya grafik halinde verildiğinde, bu tamamen belirlidir. Denklem halinde ifade edilen fonksiyonlarda tarif bölgesini ayrıca belirlemek lazımdır. Mesela, bir karenin alanını belirleyen bir fonksiyonda, kenar sıfırdan büyük olacağı için fonksiyon şöyle ifade edilir:

A = x2; x > 0

Fonksiyonun (temsili)

y değerinin x argümanının bir fonksiyonu belirtmek için y = f(x) yazılır. Bu ifade tarzına tarif bölgesi eklenirse, y = f(x); x > 0 şeklinde yazılabilir.

Eğer iki farklı fonksiyon varsa, f(x) ve g(x) olarak gösterilebilir. Burada g, sadece fden farklı bir fonksiyonu temsil etmektedir. Bu çeşit temsilde f(x) tablo, grafik, formül veya başka bir şekilde belirtilen fonksiyonu ifade eder. Mesela; f(x) = x2 + x + 3; x>0 şeklinde bir fonksiyon verilmişse; x = 1 için fonksiyonunun değeri 5tir. Bu f(1) = 12+ 1 + 3 = 5 yazılarak hesaplanır. Fonksiyon çeşitleri: Matematikte en basit ve en kullanışlı fonksiyon çeşidi cebirsel denklemlerde ifade edilenlerdir. Buna misal olarak y = 2x+3, y = x2-4x+5, y = (x+5)/(x2+7) ve verilebilir. Bunlar sıra ile doğrusal, ikinci dereceden, kesirli ve irrasyonel cebirsel denklemlerdir. Bir fonksiyon ifade ederken, bunun tarif bölgesindeki farklı bölgeler için farklı formüller verilebilir. Mesela; x>1 için, f(x) = x+1, -1£x£+1 için f(x) = x; x= 1 için f(x) = x-1 gibi denklemlerde cebirsel ifade edilemeyen fonksiyonlara, transandantal fonksiyonlar denir. Bunların en basiti logaritmik ve trigonometrik fonksiyonlardır.

Adi logaritma tablosu, her pozitif N sayısı için bir L logaritma değeri verir. Böylece L = log10 N fonksiyonunu tarif eder. Tarif bölgesi pozitif sayılar cümlesidir. Bu tablo tersine de kullanılarak logaritması belirli olan sayının kendisi bulunabilir ve bu ise N = antilog10 L fonksiyonunu tarif eder. Bu iki fonksiyon ise, bir fonksiyon denklemini sağlayacak bir L sayısının bulunması şeklinde tarif edilir. Bu da üstel (eksponansiyel) fonksiyona bir örnektir.

Trigonometrik oranların tablosu, karşı gelen fonksiyonları gösterir. Mesela açıların sinüs tablosu her açıya bir sayı karşılığı getirir. Bu sin (x+360°) = sin x olduğu için periyodik bir fonksiyondur. xin bütün gerçek değerleri için tarif edilen y = sin x fonksiyonunun aldığı değerler -1£y£+1 şartını sağlayan sayılar cümlesinde bulunur. Bu fonksiyon tek değerli bir ters fonksiyona sahip değildir. Mesela y = 1/2ye karşı gelen pekçok x değeri mevcuttur. Ancak değişken -p/2 ile p/2 arasında sınırlandırılırsa, bu aksaklık giderilebilir.

Böylece -p/2 £ x £ p/2 için y= sin x fonksiyonu tek değerli bir ters fonksiyona sahib olup -1£y£+1 olmak üzere x= arc sin y olarak gösterilir.

Bir fonksiyonun limiti

Birden fazla aralıkta tarifli olan fonksiyonlar analizde önemli bir yer tutar. Mesela f(x) = (x2-1)/(x-1) fonksiyonu x = 1 hariç her gerçek sayı için tariflidir. Bu analizde sık rastlanan bir duruma örnektir. Eğer karşı gelme kuralı için, (x2-1)/(x-1) kesirli hali kabul edilirse, x = 1 için tarifsiz ifadesi elde edilir. Diğer değerlerde hiçbir zorluk yoktur. Ancak fonksiyon, y= (x-1) (x+1)/(x-1) yazılır ve sadeleştirme yapılırsa y = x+1 bulunur. x değeri 1e yaklaştıkça, fonksiyon değerlerinin 2ye yaklaştığı kolayca anlaşılabilir. Bu matematiksel olarak: x2 - 1 lim ⎯⎯⎯⎯⎯ = 2 x→1 x - 1 şeklinde yazılır. Analizde yapılan işlemler çoğu zaman argümanın belirli bir değere yaklaştığında fonksiyonunun yaklaştığı limiti bulmağı gerektirir. Sürekli ve süreksiz fonksiyonlar: x = 1 için: x2 - 1 y = ⎯⎯⎯⎯ x + 1 fonksiyonu süreksiz bir fonksiyona örnektir. Çünkü x= 1 için y, belirsiz olduğundan, fonksiyon bir noktada süreksizdir. Diğer taraftan y=x+1 fonksiyonu her noktada süreklidir. Fonksiyonun bir noktada sürekli olması için o noktada belirli olması, argüman o noktaya yaklaşırken tek bir limite yaklaşması ve bu limitin tarifte verilen değere eşit olması gerekir.

Fonksiyon teorisi

Çeşitli fonksiyonların özelliklerini incelemek, kapalı ifadeleri bulunmadığında fonksiyonun özelliklerinden fonksiyonları keşfetmek ve bu arada çok farklı fonksiyonlar kullanmak, fonksiyonlar teorisinin konularından bazılarıdır. Bu da analizin bir koludur.

Kaynak

Rehber Ansiklopedisi
İlgili Konu Başlıkları Tümü

Karakteristik Fonksiyon

Olasılık kuramı içinde herhangi bir rassal değişken için karekteristik fonksiyon bu değişkenin olasılık dağılımını tüm olarak tanımlar.

Ters Fonksiyon

ters fonksiyon, bir fonksiyonun görüntü kümesinden alınan herhangi bir elemanını tanım kümesindeki aslına gönderen fonksiyona denir. Bir fonksiyonun tersi, fonksiyon birebir ve örten ise tanımlı olabilir. Ters fonksiyon f^-1 (x) ile gösterilir. Ancak f^-1(x) yalnızca bir gösterim ...

Erektil Fonksiyon Bozukluğu

Profesyonel terapi: Erektil fonksiyon bozukluğu yaşayan hastaların genellikle fiziksel ve psikolojik nedenlerle birlikte görübildiğinden uzman psikolog ya da psikiyatristle görüşerek endişeyi azaltabilir. Terapiler genellikle diğer tedavilerli birlikte doktorun denetiminde ...

İlkel Fonksiyon

Türevi ``f(x)`` veya diferensiyeli ``f(x)dx`` olan bir F(x) fonksiyonuna, ``ilkel fonksiyon`` veya ``f(x)dxin integrali denir.

Özel Fonksiyon

Özel fonksiyonlar, matematiksel analiz, fonksiyonel analiz ve fizikte belirli bir kullanımı olan ve genellikle litaratüre kazandıran bilim adamının adıyla anılan fonksiyonlardır. Bir fonksiyonun özel olarak adlandırılması için kabul görmüş genel bir tanımlama yoktur.

Üstel Fonksiyon

Üstel fonksiyon, matematiğin en önemli fonksiyonlarından biridir. ex veya exp(x) sembolleriyle gösterilir.

Analitik Fonksiyon

Analitik fonksiyon, karmaşık düzlemde, açık kümeler üstüne tanımlı bir tür karmaşık değerli fonksiyon. Karmaşık düzlemin Ω (``omega``) ile gösterilen açık kümesi üstüne tanımlı ``f`` fonksiyonu analitikse, Ω`nın her ``a`` noktasının bu kümede yer alan bir ``U`` ...

Bileşke Fonksiyon

Bileşke fonksiyon, matematikte bir işlevdir.

Birebir Fonksiyon

<math>f:X\longrightarrow Y</math>, <math>X</math>`ten <math>Y</math>`ye giden bir fonksiyon olsun. Eğer her <math>x_1,\, x_2\in X</math> için <math>f(x_1)=f(x_2)</math> eşitliği <math>x_1=x_2</math> eşitliğini ...

Gerçel Fonksiyon

Gerçel fonksiyonlar, matematiksel analizin özellikle reel analizin klasikleşmiş nesneleridir.Bu bağlamda, gerçek değerli bir fonksiyonun aynı zamanda tanım kümesini gerçek sayıların oluşturduğu gerçek değerli fonksiyon anlamına geldiği söylenebilir.Ancak, Fourier Analizinde ...

Harmonik Fonksiyon

harmonik fonksiyon, R''nnin ''U'' gibi açık bir kümesi üzerinde ''f'' : ''U'' → R şeklinde tanımlı, Laplace denklemini, yani

Holomorf Fonksiyon

Holomorf fonksiyonlar karmaşık analizin temel çalışma araçlarından biridir. Bu fonksiyonlar karmaşık düzlemin yani C'nin açık bir altkümesinde tanımlı, bu altkümedeki her noktada karmaşık anlamda türevli ve aldığı değerler yine C içinde olan fonksiyonlardır.

Holomorfik Fonksiyon

Holomorf fonksiyonlar karmaşık analizin temel çalışma araçlarından biridir. Bu fonksiyonlar karmaşık düzlemin yani C'nin açık bir altkümesinde tanımlı, bu altkümedeki her noktada karmaşık anlamda türevli ve aldığı değerler yine C içinde olan fonksiyonlardır.