Kuantum Kütleçekim

Kuantum kütleçekim kuramsal fiziğin bir dalı olup doğanın temel kuvvetlerinden üçünü (elektromanyetizm ve etkileşimleri) tanımlayan kuantum mekaniği ile dördüncü temel kuvveti kütleçekimin kuramı olan genel göreliliğini birleştireceği düşünülen bir kuramdır.

Dört temel kuvveti birleştirmede karşılaşılan güçlüklerin çoğu evrenin işleyişi hakkındaki bu teorilerin birbirlerinden tümüyle farklı kabullerinden doğmaktadır. Örneğin kuantum mekaniğinde mutlak bir zaman varken genel görelilikte her gözlemcinin kendisine göre ayrı birer zaman mefhumu vardır. Kuantum kütleçekim yolunda karşılaşılan bir başka güçlük de deneysel veri eksikliğidir. Kuantum kütleçekimini test etmek için gerekli enerji ve koşullar (Planck ölçeği) hal-i hazırdaki teknolojimiz için ulaşılamaz durumdadır. Şimdilik hiçbir deneysel gözlem tarzına ilişkin bir veri sağlayabilmiş değildir. Bu duruma tezat olabilecek bir durum ateşten set paradoksunda karşılaşılmıştır. O tartışmalarda kuantum kütleçekim etkilerinin daha önce öngörülemeyen büyük bir ölçekte, kara deliğin olay ufku ölçeğinde, tezahür ettiği iddia edilmektedir.

Kuantum kütleçekim teorileri bildiğimiz uzay-zaman kavramlarının ortadan kalktığı kuantum dalgalanmalarını öngörür. Bu dalgalanmalar uzay-zamanın Planck ölçeğinde adeta köpük gibi kabardığını ifade eder.

Kütleçekiminin şimdiki hali, Albert Einstein'ın genel görelilik teorisi baz alınarak oluşturulmuştur. Genel görelilik teorisi de, klasik fiziğin yapısına göre şekillendirilmiştir. Diğer bir taraftansa, kütleçekimsel olmayan kuvvetler, kuantum mekaniği taban alınarak açıklanabilir. Kuantum mekaniği, fiziksel fenomenleri tamamen farklı bir formda ele alır ve olasılık tabanlı çalışır. Kütleçekiminin kuantum mekaniği ile açıklanması gerekliliği, iki klasik sistemin, tek bir kuantum sistemine dönüştürmesi sorununu ortaya çıkarttı.

Genel göreliliği, kuantum mekaniği yasaları ile birleştirmek için, kuantum kütleçekim teorisine ihtiyacımız olmasına rağmen, kuantum alan yönergeleri, yerçekimi kuvveti ile bağdaştırılırken çeşitli problemler ortaya çıkmaktadır. Teknik bir noktadan bakılınca, teori uygulandığı noktada çalıştığı şeyi tekrar normalleştiremiyor ve bu da teorinin anlamlı fiziksel tahminler yapmasını engelliyor. Sonuç olarak, kuramcılar kuantum kütleçekim için daha radikal yaklaşımlar oluşturdular bunlardan en popülerleri sicim kuramı ve ilmek kuantum kütleçekimi. Son gelişmelerden Casual Fermion Systems adı verilen teori , kuantum mekaniği , genel görelilik ve kuantum alan teorisini kısıtlayarak oluşturuldu.

Kuantum kütleçekiminin tek amacı kütleçekimsel alanların kuantum davranışlarını açıklamaktır ve bu amaç geri kalan bütün etkileşimleri tek bir matematiksel çatı altına toplamaya çalışmak ile karıştırılmamalıdır. Yerçekiminin mevcut anlayışındaki herhangi bir gelişim, bütün etkileşimlerin birleştirilmesi için biraz daha çalışmaya ihtiyacımız olduğunu gösteriyor. Kuantum kütleçekim çalışması ise, içinde pek çok branş barındıran ve birleştirilme olayına çok farklı yaklaşımları olan bir çalışma alanı. Sicim teorisi gibi, yerçekimini diğer temel kuvetlerle açıklamaya çalışan kuantum kütleçekim teorilerine rağmen, loop kuantum kütleçekim gibi diğerleri ise, kuantum yerçekimini diğer kuvvetlerden ayrı tutarken, kuantlar haline getirmeye çalışır. Kuantum kütleçekim teorisi ya da diğer bir deyişle büyük birleşik kuram olarak bilinen bu olay, bazen de "her şeyin teorisi" olarak da bilinir.

Kuantum kütleçekiminin bir diğer zorluğu ise, bu kütleçekimsel etkilerin yalnızca Plank ölçeğine yakın değerlerde görünmesinin beklenmesidir. Bu ölçek, yüksek enerjili parçacık ivmelendiricilerin sınırlarında erişilebilir, ufak sınırlarda bir ölçektir. Sonuç olarak, her ne kadar kuantum kütleçekim genel anlamda teorik bir girişim gibi görünse de, hala kuantum kütleçekim etkilerinin bazı deneylerde görüntülenebileceğine dair spekülasyonlar vardır.

Kaynak:

Vikipedi

Bu konuda henüz görüş yok.
Görüş/mesaj gerekli.
Markdown kullanılabilir.